

THE PREMIER CONFERENCE 8 EXHIBITION ON COMPUTER GRAPHICS 8 INTERACTIVE TECHNIQUES

RGB↔X: Image Decomposition and Synthesis Using Material- and Lighting-aware Diffusion Models

Zheng Zeng, Valentin Deschaintre, Iliyan Georgiev, Yannick Hold-Geoffroy, Yiwei Hu, Fujun Luan, Ling-Qi Yan, Miloš Hašan

Background

Intrinsic decomposition

Intrinsic channels

Intrinsic decomposition is hard

Intrinsic decomposition is hard

Image

[Zhu et al. 2022b]

Image

[Zhu et al. 2022b]

[Kocsis et al. 2023]

Image

[Zhu et al. 2022b]

[Kocsis et al. 2023]

[Zhu et al. 2022b]

[Kocsis et al. 2023]

Intrinsic decomposition

Intrinsic channels

Physically based

rendering

*Images from Andrew Price's Blender tutorial

Scene description

Physically based rendering

- Precise and consistent
- Perfect controllability
- Requires full scene description

Realistic image

*Images from Andrew Price's Blender tutorial

Image generated by SD v3

.

٠

Intrinsic channels

Intrinsic channels

Method

Intrinsic channels

RGB \rightarrow X: how it works?

Finetune Stable Diffusion on synthetic data

- Conditioned on image RGB
- Produce intrinsic channels X

Re-purpose "prompt" as a "switch"

- Example: given "albedo", it produces albedo
- Benefits:
 - Avoid finetuning multiple outputs it's harder
 - Enable usage of datasets with different available channels
- More details in paper

\checkmark : available. \checkmark : available but not reliable. X: not available.

RGB→X results

RGB→X results (works, despite no outdoor training data)

Intrinsic channels

X→RGB: how it works

Finetune Stable Diffusion on synthetic data

- Conditioned on intrinsic channels X
- Produce image RGB

Intrinsic channel dropout strategy

- Randomly drop condition channels during training
- Benefits: this lets us
 - handle heterogeneous datasets during training
 - choose which inputs to provide at inference

X→RGB results (comparison to classical rendering)

Our X→RGB result (from intrinsic channels) Reference classical rendering (needs full scene)

X→RGB results (material / lighting control by text prompts)

Having RGB \rightarrow X and X \rightarrow RGB?

RGB→X→RGB

ntrinsic channels

$RGB \rightarrow X \rightarrow RGB$ results

Our intrinsic channels X

$RGB \rightarrow X \rightarrow RGB$ results

Our intrinsic channels X

$RGB \rightarrow X \rightarrow RGB$ results

Our intrinsic channels X

$RGB \rightarrow X \rightarrow RGB$ application: material editing

Input image with mask

$RGB \rightarrow X \rightarrow RGB$ application: synthetic object insertion

Edited intrinsic channels with synthetic object

Result image

$RGB \rightarrow X \rightarrow RGB$ application: synthetic object insertion

Input photo

Result image

$RGB \rightarrow X \rightarrow RGB$ application: relighting

Relit

Thanks to Julien Philip for contributing on this result.

Summary

- A unified diffusion framework for
 - intrinsic channel estimation from images (termed RGB \rightarrow X) and
 - synthesizing realistic images from such channels ($X \rightarrow RGB$)
- RGB \rightarrow X \rightarrow RGB enables
 - Material editing, object insertion, relighting

Project page here

RGB↔X: Image Decomposition and Synthesis Using Material- and Lighting-aware Diffusion Models

Zheng Zeng, Valentin Deschaintre, Iliyan Georgiev, Yannick Hold-Geoffroy, Yiwei Hu, Fujun Luan, Ling-Qi Yan, Miloš Hašan

