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Abstract Stochastic progressive photon mapping (SPPM) is one of the important global illumination methods in computer

graphics. It can simulate caustics and specular-diffuse-specular lighting effects efficiently. However, as a biased method, it

always suffers from both bias and variance with limited iterations, and the bias and the variance bring multi-scale noises

into SPPM renderings. Recent learning-based methods have shown great advantages on denoising unbiased Monte Carlo

(MC) methods, but have not been leveraged for biased ones. In this paper, we present the first learning-based method

specially designed for denoising-biased SPPM renderings. Firstly, to avoid conflicting denoising constraints, the radiance of

final images is decomposed into two components: caustic and global. These two components are then denoised separately

via a two-network framework. In each network, we employ a novel multi-residual block with two sizes of filters, which

significantly improves the model’s capabilities, and makes it more suitable for multi-scale noises on both low-frequency and

high-frequency areas. We also present a series of photon-related auxiliary features, to better handle noises while preserving

illumination details, especially caustics. Compared with other state-of-the-art learning-based denoising methods that we

apply to this problem, our method shows a higher denoising quality, which could efficiently denoise multi-scale noises while

keeping sharp illuminations.
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1 Introduction

Stochastic progressive photon mapping (SPPM) [1]

is a widely used global illumination simulation algo-

rithm in computer graphics. It is a memory-friendly

modification of photon mapping (PM) [2] and progres-

sive photon mapping (PPM) [3]. It can simulate caustics

and specular-diffuse-specular lighting effects efficiently.

However, as a biased but consistent method, SPPM

always suffers from both bias and variance [4, 5] with lim-

ited iterations or inappropriate scenario configurations,

and it often takes a prohibitive amount of time to pro-

duce a high-quality and noise-free image. The bias in

SPPM renderings usually appears as low-frequency and

large noises on diffuse surfaces, and the variance ap-

pears as high-frequency and small noises on glossy sur-

faces. This property of SPPM brings multi-scale noises

into one rendering image.

Recently, deep learning approaches have shown

great advantages on denoising unbiased Monte Carlo

(MC) path tracing [6–9], but have not been leveraged

for biased methods. In this paper, we present the first

learning-based image-space denoising method designed

for biased SPPM renderings (see Fig.1).
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Fig.1. We introduce a deep learning approach for denoising bias and variance in SPPM renderings. We present a network that extracts
spatial features via multi-residual blocks, predicts kernel weights to filter noisy colors, and produces a high-quality result. The network
is trained to learn the complex relationship between noisy inputs and corresponding reference. And then it can be used to denoise
images from other scenes and output high-quality results. We show the denoising results of our method in the above images.

To avoid conflicting denoising constraints and keep

more sharp caustics, we first separate radiance of final

results into two components: caustic and global, which

represent caustics and other illumination effects respec-

tively. Then we employ a two-network framework to de-

noise these components separately, and combine them

to get the final result at the end.

When denoising SPPM, a network with a larger fil-

ter size can better remove multi-scale noises, especially

large noises on a low-frequency area (e.g., a flat sur-

face). But it is difficult to remove noises without over-

smoothing on a high-frequency area (e.g., a narrow re-

gion with dramatic changes in geometry). A network

with a small filter size is the opposite. Based on this

observation, we introduce a novel multi-residual block

within each network. The block contains two residual

functions with different filter sizes. It significantly im-

proves the model’s capabilities and benefits from both

large and small sizes of filters when denoising. We also

present some photon-related auxiliary features, such as

photon density, photon flux, and photon gradient, to

better handle noises while preserving correct illumina-

tion details, especially caustics. Our contributions are

summarized as follows:

• the first learning-based method for biased

SPPM denoising, which outperforms the state-of-the-

art learning-based MC denoising methods that we ap-

ply to this problem;

• a novel deep residual denoising network with

multi-residual blocks that benefits from both large and

small sizes of filters, which allows better dealing with

multi-scale noises on both low-frequency and high-

frequency areas in SPPM renderings.

• a series of photon-related auxiliary features to bet-

ter handle noises while preserving correct illumination

details, especially caustics.

The remainder of this paper is organized as follows.

In Section 2, we briefly review learning-based denois-

ing approaches and photon mapping algorithms. The

theoretical background and our framework for SPPM

denoising are described in Section 3 and Section 4 re-

spectively. We present our experimental setups in Sec-

tion 5 and our results in Section 6. And finally, we

conclude the paper in Section 7.

2 Related Work

2.1 Deep Learning Based Monte Carlo

Denoising

Deep learning has shown impressive impacts on un-

biased Monte Carlo (MC) denoising. The work of [10]

by Kalantari et al. is the first using a neural network

for MC denoising. They learned the relationship be-

tween the noisy scene data and the ideal filter parame-

ters with a multilayer perceptron neural network and

used the learned model for new scenes for a wide range

of distributed effects. Bako et al. [6] introduced a novel,

kernel-prediction network (KPCN) which uses the con-

volutional neural network (CNN) to estimate the local

weighting kernels to compute each denoised pixel from

its neighbors. They decomposed the diffuse and spec-

ular components, pre-trained two networks for them

separately, and then fine-tuned the complete frame-

work. KPCN has shown great improvement over the

prior MC denoisers. This work was further improved

by Vogels et al. [7], combining KPCN with several task-

specific modules, and optimizing the assembly using an

asymmetric loss, resulting in a more robust solution in

the end. Especially, they built upon a multi-scale archi-

tecture to address residual low-frequency noise, while

their single-frame denoiser could not directly address

this issue. Wong and Wong [8, 9] used residual learn-

ing for high-quality denoising of path tracing rendering.
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Their model (RDP) directly predicts the corresponding

noise-free color instead of per-pixel kernel weights. Xu

et al. [11] also denoised MC renderings via directly pre-

dicting the final color with a generative adversarial net-

work (GAN). It is the first adversarial learning-based

method for MC denoising. And they also adapted a

well-designed conditioned auxiliary feature modulation

method to better utilize the rendering feature buffers.

Likewise, Yang et al. [12] introduced a dual-encoder net-

work (DEMC) with a feature fusion sub-network to

handle the feature buffers separately. They first fused

the feature buffers and then encoded these buffers with

a noisy image simultaneously, and finally produced a

noise-free image. Gharbi et al. [13] presented the first

CNN that can learn to denoise MC renderings directly

from the samples, rather than the summary statistics of

a pixel’s sample distribution. But we do not consider

their method as a solution to SPPM denosing, since

SPPM is a pixel-based method, rather than sample-

based.

Different from previous work, we use deep learning

on biased SPPM denoising. It suffers from both bias

and variance, unlike the unbiased denoising method

that only focuses on the variance issue.

2.2 Photon Mapping

Photon mapping (PM) [2] is one of the important

global illumination methods. It is robust and effec-

tive at simulating caustics and specular-diffuse-specular

(SDS) light paths. These are challenging for unbiased

general MC based methods. PM runs in two steps:

photon tracing and photon density estimation. In the

first step, the photons are shot from the light sources,

bounced in the scene and stored in photon maps. In

the second step, the radiance of each pixel is computed

by estimating the photon density in the photon maps.

However, PM suffers from memory issue, as it often re-

quires storing an infinite number of photons to produce

a photometrically correct result [14].

Progressive photon mapping (PPM) methods [3] ad-

dress the memory issue by restructuring PM to ite-

ratively trace new photons. It was further modified

by Hachisuka et al. [1] to stochastic progressive pho-

ton mapping (SPPM), which generates new gather

points in each iteration for circumventing the memory

bound. However, SPPM still suffers from both bias

and variance [4, 5] with limited iterations or inappropri-

ate scenario configurations.

Several attempts have been made to reduce bias

and variance for PM and PPM, by changing photon

energy accumulation [2, 15] or improving the searching

bandwidth [16]. Photon relaxation methods [17] elimi-

nate random distribution noise in the photon map. Fu

et al. [18] adjusted a weighting parameter adaptively

across the scene for a better balance between bias

and variance. Kaplanyan et al. [19] introduced adaptive

progressive photon mapping (APPM), which optimally

balances bias and variance to minimize the overall er-

ror.

All these approaches highly rely on the 3D space

with great complexity. Compared with them, we resort

to the image-space denoising solution which is simple

and effective.

2.3 Deep Residual Networks

Increasing the network depth is known to improve

the model capabilities. However, increasing the depth

can be challenging for the learning process because

of the vanishing gradient problem [20]. Deep resid-

ual networks [21] address this issue by using identity

skip-connections. These skip-connections and resid-

ual blocks in the network permit the reuse of up-

stream features to establish a multi-scale alike map-

ping capability and maintain some consistency with up-

stream blocks [8].

Specifically, for denoising task, it always needs to

be designed relatively deep to improve the model ca-

pabilities while maintaining some consistency with the

input. This makes the deep residual network naturally

suited for the denoising task [8].

However, an obvious drawback of residual networks

is that every percentage of improvement requires signifi-

cantly increasing the number of layers [22], which lin-

early increases the input image size when predicting

the denoiser kernel [7].

Recently, some theories have been put forward, that

the width (the number of convolutional filters) [23] and

the multiplicity (the number of residual functions in

the residual blocks) [24] are important to improve the

model capabilities in addition to depth. And inspired

by Abdi et al. [24], we propose to increase the multi-

plicity of SPPM denoising network, i.e., to employ a

multi-residual block, which can significantly improve

the training performance and better handle the multi-

scale noises while keeping the depth fixed.

3 Theoretical Background

In this section, we first introduce the bias and vari-

ance issues of SPPM. Then we formalize the SPPM
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denoising as a supervised learning problem and define

some necessary notations.

3.1 Bias and Variance in SPPM

SPPM [1] is a multi-pass method. In the distributed

ray tracing pass, a set of hit points is generated ran-

domly. In the photon tracing pass, a number of photons

are shot and traced from lights, accumulating contri-

butions at nearby hit points, and then assigning shared

statistics (e.g., shared accumulated flux, shared search-

ing radius) to each pixel. This process then repeats.

Using the shared statistics, the average radiance

value L(S,ω) at the i-th pass over the region S toward

the direction ω is approximated:

L(S,ω) ≈
τi(S,ω)

Ne(i)πRi(S)2
,

where i is the photon tracing iteration, τi(S,ω) is the

shared accumulated flux over the region S, Ne(i) is the

number of emitted photons after i passes, and Ri(S) is

the shared searching radius.

These shared statistics are then updated:

Ni+1(S) = Ni(S) + αMi (xi) , (1)

Ri+1(S) = Ri(S)

√
Ni(S) + αMi (xi)

Ni(S) +Mi (xi)
,

Φi (xi,ω) =

Mi(xi)∑

p=1

fr (xi,ω,ωp)Φp (xp,ωp) , (2)

τi+1(S,ω) = (τi(S,ω) + Φi (xi,ω))
Ri+1(S)

2

Ri(S)2
,

where xi is a randomly generated position within S,

Ni(S) is the shared local photon count, Mi is the found

photon count within the searching radius during the

i-th pass, fr is the bidirectional reflectance distribu-

tion function (BRDF) and Φp (xp,ωp) is the flux of

photon p with position xi and incoming direction ωp.

α ∈ (0, 1) is a user-defined parameter that determines

how quickly the contributions from photons in earlier

passes are faded out.

Since this updating procedure satisfies the condi-

tions of consistency [25], the stochastic radiance esti-

mate converges to the correct average radiance over S

for i → ∞:

L(S,ω) = lim
i→∞

τi(S,ω)

Ne(i)πRi(S)2
,

meanwhile Ne(i) → ∞ and Ri(S) → 0.

However, in practice, this radiance estimate is hard

to converge to the correct result. And SPPM always

suffers from both bias and variance under a finite num-

ber of passes i, or inappropriate user-supplied scenario

configurations (e.g., α, Rinital(S), or the number of

emitted photons per pass).

As shown in Fig.2, bias usually appears on diffuse

surfaces as low-frequency and relatively large noises, or

over blurring illumination features (e.g., soft shadows

and caustics). This is due to the biased radiance es-

timation at hit points with an insufficient number of

photons Ne(i) or an overlarge searching radius Ri(S).
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Fig. 2. Bias and variance in SPPM renderings. Bias usually
appears as low-frequency and large noises, and variance usually
appears as high-frequency and small noises. (a) SPPM rendering
result on Bidir Room scene, 100 rendering passes. (b) A zoom-in
view of 100 passes result. (c) A zoom-in view of 3 000 passes
result.

On glossy surfaces (see Fig.2), the variance looks

like high-frequency and relatively small noise. This

is because glossy surfaces may have high variance if

the specular lobe is tight and not enough photons have

arrived to represent the incident radiance distribution

well [26]. Furthermore, sampling from a glossy surface

to get the next hit point also leads to variance.

3.2 Image-Space Denoising Model for SPPM

The bias and the variance bring multi-scale noises

into one rendering of SPPM. For solving it, we propose

an image-space denoising method by modeling and es-

timating a filtering function G. It is used to compute

the filtered color ĉi of a pixel i. ĉi is evaluated as the

weighted sum of the pixel colors cj in a neighborhood

N (i) centered at pixel i:

ĉi =
∑

j∈N (i)

G (Xi, θi,j) cj, (3)

where Xi = {xj : j ∈ N (i)} is a block of vectors around

the neighborhood N (i), and xj = (cj ,fj) is a per-pixel
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vector including color cj and auxiliary features fj com-

puted from the photon map. θi,j represents the weight

of color cj.

Bako et al. [6] modelled a similar function of G via a

deep fully convolutional network (KPCN) to predict the

per-pixel kernel. KPCN achieves state-of-the-art per-

formance at removing high-frequency and small noise in

path tracing (PT) renderings, but it tends to produce

low-frequency artifacts [7], which makes it even more

un-robust to handle low-frequency and large noises in

SPPM renderings.

Especially, when denoising multi-scale noises in

SPPM renderings, it needs a large filter size for better

removing large noises on low-frequency areas. But fil-

ters with large size always fail to remove noises without

over-smoothing on high-frequency areas, like a corner

of wall or cabinet seams. And filters with a small size

are just on the contrary.

To address this limitation, we propose a learning-

based method with a novel multi-residual denoising net-

work to model function G for SPPM, which benefits

from both large and small sizes of filters.

4 Deep Residual Denoising

In this section, we introduce an SPPM denoising

framework to model the function G in (3) with a multi-

residual denoising network (MRDN) (Fig.3). We first

separate the radiance of final renderings into caustic

and global components (Subsection 4.1). Then, we use

a two-network framework (Subsection 4.2) to denoise

them. For each component, we employ an MRDN to

deal with multi-scale noises from bias and variance. We

also use a set of photon specific auxiliary features (Sub-

section 4.3) as the network inputs to better handle bias

while preserving sharp illuminations.

4.1 Components Decomposition

Using a weighted reconstruction method (like the

function G to directly denoise SPPM) always leads to

conflicting denoising constraints. Suppose a group of

photons contribute to a surface, it is hard to decide

whether to average out and blur out their contributions

(they are a biased estimate on the diffuse surface) or to

stay sharp (they are caustics with some fuzzy).

We address this issue by decomposing the render-

ing result, i.e., final radiance of each pixel, into two

components: caustic and global. These two compo-

nents represent the radiance estimation result of two

types of photons: caustic photons and global photons.

If photons go through a delta BSDF and reach a dif-

fuse surface or reach a glossy surface at the maximum

depth without any diffuse bounces, they are called caus-

tic photons; otherwise, global photons.

The two components are pre-processed, denoised,

and post-processed respectively, and then get combined

to produce the final result (Fig.3). Thus, we reform (3)

as:

ĉglobali =
∑

j∈N (i)

Gglobal

(
Xglobali , θi,j

)
cglobalj ,

ĉcaustici =
∑

j∈N (i)

Gcaustic (Xcaustici , θi,j) ccausticj ,

ĉi = ĉglobali + ĉcaustici .

Both caustic and global components have high-dynamic

range (HDR) values, which make the optimization pro-

cess highly unstable; thus we apply a logarithmic trans-

form in the pre-processing step to each component:
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Fig. 3. Overview of our denoising framework. We start by preprocessing caustic and global components and then feed them to
the two networks which denoise the two components respectively. After denoising, the two separate outputs are reconstructed and
post-processed to get the final denoised image.



Zheng Zeng et al.: Denoising SPPM Renderings Using a Multi-Residual Network 511

c̃ = log (1 + c). After being denoised separately, we

apply exponential transformation to each network out-

puts and then recombine them:

ĉ = exp (ĉglobal) + exp (ĉcaustic)− 2.

4.2 Network Architecture

We propose a multi-residual denoising network

(MRDN) (Fig.4). It consists of a novel multi-residual

extractor and a kernel predictor with weighted recon-

struction designed by Vogels et al. [7]

The multi-residual extractor extracts the spatial

features, which has nine multi-residual blocks along

with convolution, activation, and batch-normalize lay-

ers. We use two residual functions with different recep-

tive fields (i.e., filter kernel sizes) in each residual block

(Fig.5), to better handle the multi-scale noises on both

low-frequency and high-frequency areas:

H(x) = Concatenate(F1(x), F2(x)) + x,

where H(x) is the output of multi-residual blocks,

F1(x) and F2(x) are the different residual functions,

and x is the input of blocks (skip connection). The

skip connection aims to construct identity mapping and

permit features reuse.
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Fig.4. Overview of our multi-residual denoising network (MRDN). It consists of a novel multi-residual extractor, a kernel predictor,
and weighted reconstruction. “Conv” refers to the convolutional layer.
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Fig. 5. Overview of our multi-residual block. There are two
streams with two sizes of convolutional filters, 3× 3 (up) and
5× 5 (down).

After extracting the spatial features, we employ a

kernel predictor, to predict 21 × 21 per-pixel kernels

weight, and then reconstruct the final color result.

In our network, we use parametric rectified lin-

ear unit (PReLU) [27] as our activation function, as it

performs the best in terms of both training efficiency

and denoising quality. We also employ a set of batch

normalization layers which can make our network much

more robust and less sensitive to hyper-parameters.

4.3 Auxiliary Features

Besides the features from previous work [6] (e.g., nor-

mal, tracing depth, albedo), we present some other

auxiliary features (as shown in Fig.6) to better handle

noises while preserving illumination details, especially

caustics:

• Distance: the distance t from the surface intersec-

tion to the camera;

• Photon Density: the local gathered photon count

Ni(S) from the per-pixel shared statistics in (1) with

each pixel as one unit of area;

• Photon Flux: the shared accumulated flux τi(S, ω)

over the per-pixel in (2);

• Photon Gradient: the energy-direction distribu-

tion of the photons over a region S, described in previ-

ous work [28].

5 Experimental Setup

In this section, we present our dataset and describe

our network implementation and training details.
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Fig.6. Color buffers and auxiliary feature buffers. (a) Gene-
ral feature buffers, including the color buffer. (b) Photon-related
feature buffers of global component. (c) Photon-related feature
buffers of caustic component.

5.1 Dataset

A major difficulty of training a deep denoising net-

work is that it always requires a sufficiently large and

representative dataset to learn the complex relationship

between its noisy inputs and high-quality outputs while

avoiding overfitting.

As there is no public dataset for our network, we

prepared a reasonably large high-quality dataset by

taking 19 scenes curated by Bitterli et al. 1○, covering

simple scenes to complex scenes with indirect lighting.

We modified the camera, light sources, and materials

to generate 827 different training scenes. We held out

10% of this dataset as validation data, for preventing

over-fitting and tuning the hyperparameters. We also

prepared several challenging scenes with complex illu-

mination effects as the test dataset to evaluate the final

model performance.

We rendered noisy images, auxiliary features, and

corresponding noise-free references with SPPM of Mit-

suba renderer 2○. The reference images were rendered

with 3 000 passes and 5 million photons emitted per

pass. Although there still left a small number of visible

noises (see Fig.7), they were converged enough for our

network. For noisy images, previous work [6, 8] tends to

use the same render settings for all scenes (e.g., 128

samples per pixel) since path tracing will have a simi-

lar noise pattern. As to SPPM, in one rendering image,

there are multi-scale noises; besides, it always produces

multi-scale noises under the same settings for different

scenes. Therefore, to better improve the denoising abi-

lity of our model, we chose to use several different sets

of render settings for all scenes (e.g., 100 passes and

500k photons, 10 passes and 100k photons).

Fig.7. Selected training images from our dataset.

And all the output auxiliary features include:

• global and caustic RGB color buffers cglobal and

ccaustic respectively;

• per-pixel general features buffers fgeneral, consist-

ing of normals (3 channels), albedo (3 channels), depth

(1 channel), and t (1 channel);

• photon features buffers fglobal and fcaustic, con-

sisting of photon density (1 channel), photon flux (3

channels), and photon gradient (3 channels).

5.2 Preprocessing

First, we pre-processed the color buffers as described

in Subsection 4.1 to get c̃global and c̃caustic.

1○Bitterli B. Rendering resources, 2016. https://benedikt-bitterli.me/resources/, March 2020.
2○Jakob W. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org, March 2020.
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Then, for t in fgeneral and other non-negative and

high-dynamic range features (e.g., photon density, pho-

ton flux, photon gradient) in fglobal and fcaustic, we

scaled their values via min-max normalization to the

range [0, 1].

Finally, we calculated the image-space gradients of

colors and all features in both x and y direction for

better identifying and understanding edge information

and sharp illumination features.

After this processing, we constructed our network

inputs x as:

vglobal = {c̃global,fgeneral,fglobal},

vcaustic = {c̃caustic,fgeneral,fcaustic},

xglobal = {vglobal, Gx(vglobal), Gy(vglobal)},

xcaustic = {vcaustic, Gx(vcaustic), Gy(vcaustic)}.

From each feature image, we extracted over 400

unique patches with size 65 × 65 from each frame ac-

cording to its resolution.

In the end, we prepared and sorted out two groups

of training data as follows:

• xglobal and its corresponding references c̄global;

• xcausitc and its corresponding references c̄caustic.

5.3 Model Implementation and Training

We implemented our networks in TensorFlow [29],

optimizing them with L1-loss using ADAM [30] with

a learning rate of 10−4, and setting the gradient clip

threshold as 1.0.

The networks of caustic and global components are

trained respectively with a batch size of 128. As Bako

et al. [6] suggested, for speeding up both training and in-

ference, we kept the number of parameters reasonably

low. Each network only has a total of 2 579 841 train-

able parameters. And we initialized them with Xavier

initialization [31].

During training, we evaluated the performance of

our networks on a validation dataset after each epoch,

to avoid over-fitting via early stopping. These two net-

works are trained for approximately 25 epochs to get

their best performance.

6 Results

We compare our method with KPCN [6] and RDP [8].

We apply all these methods on top of our components

decomposition and give the same inputs. For ensur-

ing fairness of comparison, we list the number of train-

able parameters (#parameters) and floating point ope-

rations per second (FLOPS) of these networks in Ta-

ble 1.

Table 1. Trainable Parameters and FLOPS

Method # Parameters FLOPS

MRDN (ours) 2 579 841 5 153 429

KPCN 2973 741 5 945 023

RDP 2 819 075 5 632 443

Note: #: Number of.

We measure image quality with mean square error

(MSE) and structural similarity (SSIM). For a detailed

comparison of HDR images, in Subsection 6.3, we use

image difference. The image difference of two images

is defined as the sum of the absolute difference at each

pixel.

6.1 Denoising Quality

Fig.8 compares our network (MRDN) against

KPCN and RDP on the Kitchen scene. In Figs.8–

10, “x mil” and “y passes” refer to rendering with y

passes and x million photons per pass. In these fig-

ures, we highlight the best scores in bold. Qualita-

tively, our approach produces a higher quality than the

other methods. Both KPCN and RDP tend to leave

low-frequency noises (e.g., on diffuse cupboards, walls,

and ceilings), while our method can remove them much

better. And they both lose some texture details after

removing noises, while our method can preserve the de-

tails well (see the chopping board, radio, and cabinet

on the table). Furthermore, RDP produces color offset

artifacts (in this case, redder than the original) after de-

noising, due to direct color prediction rather than ker-

nel prediction and reconstruction, which makes RDP

unstable to denoise unfamiliar scenes.

In Fig.9, we compare these methods with more test

scenes. The lower error measurements confirm that our

method produces the higher quality. With our method,

the sharp illumination details are better preserved, and

both the high-frequency and low-frequency noises are

better removed. In Fig.10 we compare these methods

under different render settings on the same scene. Com-

pared with others, our method achieves a higher de-

noising quality, and it tends to keep more illumination

details despite a low photon density.

6.2 Performance Analysis

In terms of timing, for an image of 1 920×1 080 pix-

els, KPCN takes an average of 10 s to evaluate kernels

and reconstruct a denoised image, while our network

takes about 14 s. The reason is that our multi-residual
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Input (1 Mil, 100 Passes) RDP KPCN MRDN (Ours) Ref. 
(10 Mil, 5 000 Passes)MSE=5.517e-2

1-SSIM=0.341
MSE=4.036e-2
1-SSIM=0.075

MSE=1.040e-2
1-SSIM=0.053

MSE=0.932e-2
1-SSIM=0.034

Input (1 Mil, 100 Passes) RDP KPCN MRDN (Ours) Ref. (10 Mil, 5 000 Passes)

Input (1 Mil, 100 Passes) RDP KPCN MRDN (Ours) Ref. (10 Mil, 5 000 Passes)

Input (1 Mil, 100 Passes) RDP KPCN MRDN (Ours) Ref. (10 Mil, 5 000 Passes)

Input (1 Mil, 100 Passes) RDP KPCN MRDN (Ours) Ref. (10 Mil, 5 000 Passes)
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(a)

(c)

(d)

(e)

Fig.8. Comparison of denoised results from KPCN, RDP, and MRDN (ours) on a challenge scene (the Kitchen scene). The quality
measurement metrics (MSE and SSIM) are shown above the images. MRDN (ours) holds the smaller errors, and it always removes more
multi-scale noises while better preserving texture details. (a) Comparison of the whole image. (b) Close-up comparison of the chopping
board. (c) Close-up comparison of the cupboards. (d) Close-up comparison of the cabinet on the table. (e) Close-up comparison of
the radio.

block requires more time to do inference. And RDP

generally takes about 15 s under the same settings.

In Fig.11, we compare the validation L1-loss of

MRDN, KPCN, and RDP. Our method (MRDN)

achieves better convergence performance compared

with KPCN and RDP on the validation set. We ob-

serve that the convergence of RDP is extremely unsta-

ble, and it holds a much larger error. Both MRDN

and KPCN have a smaller error at the early stage, due

to kernel prediction and weighted reconstruction. With

these two modules, even the untrained network can pro-

duce images that resemble the input, just with blurring.
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Fig. 9. Comparison of denoised results from KPCN, RDP, and MRDN (ours) on different test scenes, under a render setting of
0.05 millions photons and 50 passes. Our method removes more multi-scale noises while better preserving illumination details. (a)
Comparison on Lux scene. (b) Comparison on Glass of Water scene. (c) Comparison on Salle de Bain scene.
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MSE=1.017e-1
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Input (0.10 Mil, 100 Passes) RDP KPCN MRDN (Ours) Ref. (5 Mil, 3 000 Passes)
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(a)

Fig.10. Comparison of denoised results from KPCN, RDP, and MRDN (ours) under different render settings. Our method achieves a
higher denoising quality, and it tends to keep more illumination details. (a) Comparison on Salle de Bain scene, rendering with 0.01
million photons per pass, 50 passes. (b) Comparison on Salle de Bain scene, rendering with 0.10 million photons per pass, 100 passes.
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Fig.11. Convergence plots of MRDN (ours), KPCN, and RDP on (a) global and (b) caustic components. These networks are evaluated
with L1-loss on our validation dataset. The upper row shows that RDP is hard to converge and has the largest error. We zoom in and
show a more detailed comparison of the remaining two networks of KPCN and ours in the lower row.

To fully test the potential performance, we further

increase the trainable parameters by widening the net-

works. As illustrated in Fig.12, MRDN gains a huge

performance boost, while KPCN becomes unstable and

easy to over-fit.

6.3 MRDN Analysis

MRDN vs SRDN. To further validate the effec-

tiveness of our MRDN, we implement two different

single-residual denoising networks (SRDNs) with only

one residual function and one size of kernels in each

residual block. SRDN-5 has larger 5× 5 kernels and

SRDN-3 has smaller 3× 3 ones. To ensure fairness, we

slightly increase the number of channels per layer in

SRDNs blocks, to get a similar number of parameters

to MRDN.

Fig.13 compares the validation L1-loss between the

MRDN and SRDNs for both the global and the caustic

components. Since the multi-scale noises issue is more

serious in the global component, MRDN gains much

better performance than SRDNs when denoising the

global component. And in the caustic component, it is

only a little better.

Fig.14 shows the image difference of denoising re-

sults and the references. We can see that compared

with MRDN and SRDN-5, SRDN-3 has failed to re-

move low-frequency and large noises on flat cabinet sur-
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Fig.12. We further increase the trainable parameters to fully test the networks potential performance. As the number of parameters
increased from 2.9 million to 19.4 million, KPCN becomes very unstable and easy to over-fit. But MRDN (ours) could gain a huge
performance boost with the increasing number of parameters. (a) Convergence plot on global component. (b) Convergence plot on
caustic component.
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Fig.13. Comparison of validation loss between the SRDNs and MRDN for both (a) the global and (b) the caustic components.
Although MRDN has the lowest number of parameters, compared with SRDNs, it still achieves the best performance in both the global
and caustic components. And in the global component, the advantage of MRDN is even more obvious.

faces. Meanwhile, compared with MRDN and SRDN-3,

SRDN-5 finds it difficult to handle noises without over-

smoothing on narrow regions with dramatic changes

in geometry, like the boundary of walls and the cab-

inet seams. MRDN could remove multi-scale noises on

both low-frequency and high-frequency areas, and as

described in Subsection 3.2, it could gain benefits from

both large and small sizes of filters.

Photon-Related Features Validation. To validate our

photon-related features (photon density, flux, and gra-
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Fig.14. Image difference of references and denoising results of MRDN and SRDNs. Image difference equals the absolute value of the
difference between the reference and the denoised image. The darker, the better. On the low-frequency area (see (b), the flat cupboard
surface), MRDN and SRDN-5 can better remove the large noises. And on the high-frequency areas (see (c) and (d), the cupboard seams
and the boundary of walls respectively), MRDN and SRDN-3 can better remove noises while avoiding over-smoothing. (a) Comparison
of the whole image. (b) Close-up comparison of the cupboard surface. (c) Close-up comparison of the cupboard seams. (d) Close-up
comparison of the boundary of walls.

dient), we remove them from the input and train the

network again. Fig.15 shows the impact of photon-

related features on our network performance. With

photon-related features, the caustic network converges

faster. We also show the impact of photon-related fea-

tures on the denoising results in Fig.16. We observe

that more illumination details, especially caustic, are

better preserved with the photon-related features.
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Fig.15. Impact of auxiliary photon-related features on (a) global and (b) caustic components via MRDN.
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Fig.16. Comparison of caustic component denoising result with and without photon-related features via MRDN. Image difference
equals the absolute value of the difference between the reference and the denoised image. The darker, the better. With photon-related
features, MRDN could stay more sharp caustics after denoising. (a) Comparison of the whole image. (b) Close-up comparison of the
group of caustics. (c) Close-up comparison of the another group of caustics.
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7 Conclusions

We presented the first learning-based image-space

method for biased SPPM denoising. It can handle

both bias and variance in SPPM renderings well at

the same time, via a two-network framework. Specifi-

cally, we presented the multi-residual denoising net-

work (MRDN) with a multi-residual block, which can

benefit from both large and small sizes of filters. It

allows better dealing with multi-scale noises on both

low-frequency and high-frequency areas, and making

MRDN more suitable for SPPM denoising task. We

also proposed a series of auxiliary photon-related fea-

tures to better handle noises while preserving correct il-

lumination details, especially caustics. Compared with

other learning-based MC denoising methods that we

applied to SPPM denoising problem, our method can

achieve higher denoising quality and preserve illumina-

tion details much better.

There are still some interesting improving directions

in the future. Although our method performs well in

our denoising tests, it could not handle extreme large

noises when they are very different from large noises

that appear in our training dataset. This limits the

flexibility of our approach. Furthermore, we focus on

single image denoising, and it would be useful to expand

our framework to handle animated sequences rendered

with SPPM.
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