
Denoising Stochastic Progressive Photon Mapping Renderings
Using a Multi-Residual Network

Zheng Zeng1 Lu Wang1* Bei-Bei Wang2* Chun-Meng Kang3 Yan-Ning Xu1 

COMPUTATIONAL VISUAL MEDIA CONFERENCE 2020



COMPUTATIONAL VISUAL MEDIA CONFERENCE 2020

Stochastic Progressive Photon Mapping

AQUARIUM SCENE
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Stochastic Progressive Photon Mapping

Limited iterations or
inappropriate settings

A huge amount of time
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Where does the noise come from?
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Where does the noise come from?

Hard to converge

Bias

Variance
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Where does the noise come from?

Bias

Variance

• Insufficient number of photons
• Overlarge searching radius
• …

• The specular lobe is tight
• Sampling next ray
• …

Low-frequency and large noise

High-frequency and small noise

Multi-scale noises



COMPUTATIONAL VISUAL MEDIA CONFERENCE 2020

Goal: a denoising method specially designed for SPPM

Multi-scale noises

Function G
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Similar approaches: for the general MC method

A machine learning 
approach for filtering Monte 

Carlo noise
[Kalantari et al. 2015]

Kernel-predicting 
convolutional networks for  

denoising Monte Carlo 
renderings

[Bako et al. 2017]

Denoising
with kernel prediction and 
asymmetric loss functions

[Vogels et al. 2018]

Deep residual learning for 
denoising Monte Carlo 

renderings
[Wong et al. 2019]

Adversarial Monte Carlo
denoising with conditioned 
auxiliary feature modulation

[Xu et al. 2019]

Sample-based Monte
Carlo denoising using a 
kernel-splatting network

[Gharbi et al. 2019]
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Similar approaches: for the general MC method

Only focus on the variance issue



Our Method
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Model

Multi-scale noises

Function G
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Model

𝑐̂! = 𝐺 𝑐!
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Model
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Inspired by [Bako et al. 2017]
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SPPM Denoising framework

Neural Network

Neural Network
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SPPM Denoising framework
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SPPM Denoising framework

Neural Network

Neural Network
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Additional auxiliary features

Inspired by
[Kalantari et al. 2015]

[Bako et al. 2017]
[Wong et al. 2019] 
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Additional auxiliary features

Inspired by
[Kalantari et al. 2015]

[Bako et al. 2017]
[Wong et al. 2019] 
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Network architecture

[Wong et al. 2019]

[Vogels et al. 2018]
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Network architecture

Good at:

Bad at:

Large noises on low-frequency 
areas

Noises on high-frequency areas

Good at:

Bad at:

Noises on high-frequency areas

Large noises on low-frequency 
areas

large convolution filter size small convolution filter size
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Network architecture
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Network architecture

[Abdi et al. 2016]



COMPUTATIONAL VISUAL MEDIA CONFERENCE 2020

Network architecture

Inspired by [Vogels et al. 2018]
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Experimental setup

• Use 827 different training scenes to generate training data.
• Take 10% of this training data as validation data.

• Several challenging scenes with complex illumination effects 

as the test data.

• All rendered with Mitsuba. [Wenzel 2010]
• Implement our networks in TensorFlow.

• Keep the number of parameters reasonably low.



Results
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Denoising quality

[Wong et al. 2019] [Bako et al. 2017]
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Denoising quality

[Wong et al. 2019] [Bako et al. 2017]
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Performance analysis

Inference: (for a 1920*1080 image)
• KPCN: 10s
• MRDN (Ours): 14s

• RDP: 15s

Training:

Global Caustic
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MRDN analysis: Are photon-related features useful?

Global Caustic



COMPUTATIONAL VISUAL MEDIA CONFERENCE 2020

MRDN analysis: Are the multi-residual blocks useful?

Global Caustic



Limitations
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Limitations and Future Works

• It could not handle extremely large noises which are very different from noises in our training dataset.
• It would be useful to expand our method to handle animated sequences.



Summary
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Summary

• The first learning-based method for biased SPPM denoising.

• A novel deep residual denoising network with multi-residual blocks.
• A series of photon-related auxiliary features.
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Thanks for your attention
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