

Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network

Zheng Zeng¹ Lu Wang^{1*} Bei-Bei Wang^{2*} Chun-Meng Kang³ Yan-Ning Xu¹

Stochastic Progressive Photon Mapping

AQUARIUM SCENE

Stochastic Progressive Photon Mapping

Limited iterations or inappropriate settings

A huge amount of time

Problem

Where does the noise come from?

Where does the noise come from?

Where does the noise come from?

Where does the noise come from?

Where does the noise come from?

Where does the noise come from?

Bias

Low-frequency and large noise

- Insufficient number of photons
- Overlarge searching radius

• ...

Variance

High-frequency and small noise

- The specular lobe is tight
- Sampling next ray

• ...

Goal: a denoising method specially designed for SPPM

Similar approaches: for the general MC method

A machine learning approach for filtering Monte Carlo noise [Kalantari et al. 2015]

Kernel-predicting convolutional networks for denoising Monte Carlo renderings [Bako et al. 2017]

Denoising with kernel prediction and asymmetric loss functions [Vogels et al. 2018]

Sample-based Monte Carlo denoising using a kernel-splatting network [Gharbi et al. 2019]

Deep residual learning for denoising Monte Carlo renderings [Wong et al. 2019]

Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation [Xu et al. 2019]

Similar approaches: for the general MC method

Only focus on the variance issue

Our Method

Model

CVM 2020

Model

$$\hat{c}_i = G(c_i)$$

Model

$$\hat{c}_i = \sum_{j \in \mathbb{N}(i)} G(X_i, \theta_{i,j}) c_j$$

CVM 2020

Inspired by [Bako et al. 2017]

SPPM Denoising framework

SPPM Denoising framework

SPPM Denoising framework

Additional auxiliary features

General Features

Caustic Color

Distance t

Tracing Depth

Inspired by [Kalantari et al. 2015] [Bako et al. 2017] [Wong et al. 2019]

Additional auxiliary features

Caustic Color

Distance t

Tracing Depth

Inspired by [Kalantari et al. 2015] [Bako et al. 2017] [Wong et al. 2019]

Network architecture

[Vogels et al. 2018]

Network architecture

Network architecture

Network architecture

CVM 2020

Network architecture

CVM 2020

Inspired by [Vogels et al. 2018]

Experimental setup

- Use 827 different training scenes to generate training data.
- Take 10% of this training data as validation data.
- Several challenging scenes with complex illumination effects as the test data.

- All rendered with Mitsuba. [Wenzel 2010]
- Implement our networks in TensorFlow.
- Keep the number of parameters reasonably low.

Fig.7. Selected training images from our dataset.

Table 1. Trainable Parameters and FLOPS

Method	# Parameters	FLOPS
MRDN (ours)	2579841	5153429
KPCN	2973741	5945023
RDP	2819075	5632443

Note: #: Number of.

Results

Denoising quality

Shandong UNIVERSITY

Denoising quality

Performance analysis

Inference: (for a 1920*1080 image)

- KPCN: 10s
- MRDN (Ours): 14s
- RDP: 15s

Training:

60

MRDN analysis: Are photon-related features useful?

MRDN analysis: Are the multi-residual blocks useful?

Limitations

Limitations and Future Works

- It could not handle extremely large noises which are very different from noises in our training dataset.
- It would be useful to expand our method to handle animated sequences.

Summary

Summary

- The first learning-based method for biased SPPM denoising.
- A novel deep residual denoising network with multi-residual blocks.
- A series of photon-related auxiliary features.

Thanks to our enormous reviewers for their insightful comments on the paper, as these comments led us to an improvement of the work.

Thanks for your attention

Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network

Zheng Zeng¹ Lu Wang^{1*} Bei-Bei Wang^{2*} Chun-Meng Kang³ Yan-Ning Xu¹

