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Figure 1: A 3D scene rendered using our recovered and synthesised SVBRDF maps.

Abstract
We want to recreate spatially-varying bi-directional reflectance distribution functions (SVBRDFs) from a single image. Pro-
ducing these SVBRDFs from single images will allow designers to incorporate many new materials in their virtual scenes,
increasing their realism. A single image contains incomplete information about the SVBRDF, making reconstruction difficult.
Existing algorithms can produce high-quality SVBRDFs with single or few input photographs using supervised deep learning.
The learning step relies on a huge dataset with both input photographs and the ground truth SVBRDF maps. This is a weakness
as ground truth maps are not easy to acquire. For practical use, it is also important to produce large SVBRDF maps. Existing
algorithms rely on a separate texture synthesis step to generate these large maps, which leads to the loss of consistency be-
tween generated SVBRDF maps. In this paper, we address both issues simultaneously. We present an unsupervised generative
adversarial neural network that addresses both SVBRDF capture from a single image and synthesis at the same time. From a
low-resolution input image, we generate a large resolution SVBRDF, much larger than the input images. We train a generative
adversarial network (GAN) to get SVBRDF maps, which have both a large spatial extent and detailed texels. We employ a
two-stream generator that divides the training of maps into two groups (normal and roughness as one, diffuse and specular
as the other) to better optimize those four maps. In the end, our method is able to generate high-quality large scale SVBRDF
maps from a single input photograph with repetitive structures and provides higher quality rendering results with more details
compared to the previous works. Each input for our method requires individual training, which costs about 3 hours.

CCS Concepts
• Computing methodologies → Texturing;

1. Introduction

To produce realistic images, we need to model realistic surface ap-
pearance, including reflectance, texture and surface variations. A
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possible method is to have artists and designers use specialized
tools to create high-resolution texture and normal maps. Another
method is to acquire the material appearance directly. Both of these
two methods are time-consuming. A separate issue with textures is
that we often need to apply the texture over a large area, larger than
the surface used for acquisition.

Recent works have shown that it is possible to recover reflectance
functions using only a few photographs of a surface [LDPT17,
DAD∗18,LSC18,GLD∗19]. These lightweight appearance capture
approaches recover Spatially-Varying BRDF maps, with diffuse
and specular albedo, normal map and roughness parameters from a
photograph of a real-world material sample. The capture algorithm
uses convolutional neural networks (CNNs), trained with sufficient
image data under the guidance of target SVRDF maps.

These learning methods are supervised, and require a large train-
ing dataset. Most existing works rely on synthetic data generated
by a renderer. Li et al. [LDPT17] proposed a self-augmentation
method to address the lack of sufficiently large datasets. Deschain-
tre et al. [DAD∗18] provide a large dataset with various kinds of
materials. But these synthetic images are still different from real-
world images, and these approaches tend to fail when faced with
real-world images. Their networks have a low ability to generalize
to new inputs.

The generated maps for the SVBRDF are limited to the size of
the input images. Even recent work [GLD∗19] could produce high-
resolution maps relies on a high-resolution input map. Other works
have to use texture synthesis after the generation step to produce
higher resolution maps. Texture synthesis is a difficult problem in
itself. Texture features can be distorted by the synthesis process.
Also, the consistency between four SVBRDF maps is difficult to
maintain after applying texture synthesis to each separately.

In this paper, we address the same problem as prior works: to
generate a large SVBRDF map from a single head-lit flash image of
a flat textured surface. We tackle the two problems of SVBRDF re-
construction from the image and synthesis simultaneously: We de-
signed an unsupervised generative adversarial neural network that
generates high-resolution maps directly from a single image.

Our key insight is to employ a GAN to produce re-rendered im-
ages similar to the input images. In adversarial training, a random
vector is usually given to generate “fake data”. In contrast, we pro-
duce random vectors through an untrained encoder. We visualize
feature maps output by the encoder and find that the textures are
preserved well. Starting from random vectors with enough texture
information helps the generator to converge better.

We also design a two-stream generator to divide the texture
maps (normal, roughness, diffuse and specular albedo) into two
groups and separate their training apart. This generator consists of
one encoder and two decoders. One stream produces normal and
roughness, while the other produces diffuse and specular. This two-
stream generator is used during the two training stages. We found
that this two-stream generator can prevent the network from over-
fitting the diffuse map and not optimizing the other three. A single
generator tends to interpret the entire image as a diffuse map.

Our method generates large scale SVBRDF maps from a single

input photograph with high quality and provides higher quality ren-
dering results with more details compared to the previous works.

In summary, our contributions are:

• a novel GAN architecture for unsupervised high-resolution
SVBRDF maps recovery and synthesis from a single image.
• a two-stream generator to separate the training of diffuse & spec-

ular maps and normal & roughness maps, which can optimize
these four maps to generate more accurate rendering results.

The rest of the paper is arranged as follows. In Sec. 2, we review
related works. Then we present our method and implementation in
Sec. 3. After that, we show and discuss our results in Sec. 4. Finally,
in Sec. 5, we summarize our method and propose future insights.

2. Related Work

2.1. Lightweight Reflectance Capture

Lightweight appearance capture refers to methods that recover re-
flectance parameters and shape or normals from one or a few pho-
tographs, as opposed to capturing the entire SVBRDF using an ex-
tensive acquisition system with controlled illumination and camera
position. In this paper, we focus solely on lightweight appearance
capture. Gao et al. [GLD∗19] and Guarnera et al. [GGG∗16] have
presented surveys on lightweight appearance capture.

Appearance modeling based on multiple images Several works
capture the SVBRDF using multiple images as input and rely on fit-
ting or optimization to recover the information, with some assump-
tions, e.g. that the illumination is known or that there is sparsity
in some domain. Chandraker and Manmohan [Cha14] utilize mo-
tion cues to recover simultaneously jointly recover the shape and
BRDF of objects from images under known directional illumina-
tion. Hui et al. [HS15] recover SVBRDFs and shape from multiple
images under known illuminations. Riviere et al. [RPG16] record
a video of a spatially-varying sample using a mobile phone and lit
by a flashlight, and use handcrafted heuristics to identify specu-
lar and diffuse reflections. Hui et al. [HSL∗17] also record a video
using a cellphone camera and flash. They use a dictionary-based re-
flectance prior to derive a robust technique for per-pixel normal and
BRDF estimation assuming sparsity. Dong et al. [DCP∗14] and Xia
et al. [XDPT16] recover the reflectance and shapes from a video of
rotating object under unknown natural illumination, assuming the
sparsity of the strong edges in the incident lighting.

Appearance modeling based on a single or few images Another
group of work only uses one or few images as input, assuming spa-
tial sparseness of materials or stationary. Aittala et al. [AWL∗15]
used two photographs (one with flash and one without) to re-
cover the reflectance, assuming the maps are stationary. Aittala et
al. [AAL16] improved the approach, using one image as input and
leveraging the deep convolutional neural network for fitting. Xu et
al. [XNY∗16] used two images from a near-field perspective cam-
era, and assume spatial relation for reflectance recovery.

Learning-based appearance modeling Deep learning has been
very useful for SVBRDF recovering. Li et al. [LXR∗18] estimates
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The second kind is tiling methods, such as Wang tiles [Wan61,
CSHD03]. These methods first create small tiles from the input tex-
ture. These tiles are designed to allow seamless stitching to others,
and are thus used as building blocks to generate larger textures.
However, Wang tiles do not work well on structured or anisotropic
textures. More recent work used a Generative Adversarial Net-
works [FAW19] to synthesize very large terrains from a rough guid-
ance map. However, it requires thousands of tiles in the training
step, which is not suitable for our problem.

The third kind is blending methods, or by-example noise meth-
ods. They assume that any point on the resulting texture is blended
from several patches from the input texture (example). Different
blending methods of the example patches are possible, from simple
linear blending (prone to “ghosting” artifacts), to more advanced
variance preserving [YNBH11] and histogram preserving [HN18]
methods. Gatys et al. [GEB15] propose the first deep learning
method for example-based texture synthesis. They use the pre-
trained image classification network VGG-19 to extract features at
different layers and use Gram matrices to compare differences in
a statistical way. However, the blending methods do not work well
on structured images, and relied on a high resolution target image.

2.3. Generative adversarial network

GANs [GPAM∗14] are powerful at generating data from a given
prior distribution. They consist of two networks, a generator G and
a discriminator D. The generator tries to create fake but plausi-
ble images, while the discriminator tries to distinguish fake im-
ages (produced by the generator) from real images. To train the
networks, the loss function is formulated as:

min
G

max
D

E[logD(x)]+E[log(1−D(G(z)))] (1)

where z denotes a noise vector, x denotes the real images. During
training, the discriminator is jointly updated with the generator.

Recently this adversarial learning technique has been employed
in various image manipulation tasks. To our knowledge, we are the
first to bring it to the appearance modeling task.

Usually, a generator generates images from random noise (of-
ten called latent vector/code) from Gaussian distribution. Starting
from a prior distribution far away from target distribution makes the
training of GANs challenging. Recently image generating works
[IZZE17, BCW∗17] use Variational Autoencoders (VAE) to get la-
tent vectors at a good starting point. VAEs encode the latent vari-
ables and learn the prior distribution of the data that is to be gen-
erated. The Encoder is able to learn the distribution of the data and
latent vectors can be sampled from this distribution rather than gen-
erating random noise. We also use an encoder to produce latent
vectors, but the encoder is untrained.

3. Our Method

Given a single entire head-lit flash image of a flat, textured sur-
face taken by phone, we aim to recover and also synthesize the
SVBRDF maps with higher resolution. We proposed a novel unsu-
pervised generative adversarial network for these joint tasks (Sec-
tion 3.1), and introduced a combined loss function (Section 3.2).

shape and part of the BRDF using only a single flash image as in-
put. They recover normal and diffuse albedo, as well as roughness, 
but ignore the specular albedo. Boss et al. [BJK∗20] use two images 
captured by a cellphone with flash both on and off to estimate the 
shape and SVBRDF. Li et al. [LDPT17] adopt an encoder-decoder 
architecture to estimate diffuse reflectance and normal maps. They 
also introduce self-augmentation to expand a small synthetic train-
ing set. Li et al. [LSC18] train a CNN to regress an SVBRDF and 
surface normals from images. They design an in-network render-
ing layer to model appearance and a material classifier to provide 
additional supervision during training. They further refine the re-
sults from the network using a dense CRF module. Deschaintre et 
al. [DAD∗18] enrich the encoder-decoder architecture with a sec-
ondary network that extracts global features at each stage of the 
network. They also introduce an in-network renderer which com-
putes derivatives automatically during backpropagation to further 
enhance the estimated reflectance parameters. We adopt this strat-
egy in our work as well. Deschaintre et al. [DAD∗19] proposed a 
learning based SVBRDF estimation system that supports arbitrary 
number of input. They first use a network (similar to [DAD∗18]) to 
extract latent features from each individual input image. Then the 
features are assembled and sent to another few convolutional layers 
to generate final SVBRDFs. Gao et al. [GLD∗19] can estimate the 
SVBRDFs of a planar exemplar from an arbitrary number of in-
put photographs. Their method needs an initial value of SVBRDF 
maps, and they encode the initial value and directly optimize the 
parameters in latent space. With more input images, the SVBRDF 
maps get more precise.

All supervised learning approaches are limited because the res-
olution of their output is the resolution of their input. On top 
of that, some methods have to take low resolution input im-
ages [LDPT17,LSC18,DAD∗18]. Even recent methods [GLD∗19] 
that can deal with large resolution images have this limitation. In 
comparison, our method is unsupervised. The only thing we need 
is a photo of the desired surface appearance. During training, we 
send small tiles cropped from the photo into the network, and this 
makes the training fast.

2.2. Texture synthesis

Several surveys [WLKT09,AYD∗18,RDDM18] cover a wide spec-
trum of example-based texture synthesis methods and provide a 
comprehensive overview. Texture synthesis methods can be cate-
gorized into three different kinds. The first kind is called by expan-
sion, including the classic image quilting methods [EL99, WL00, 
EF01,LH05] and also modern solutions using Generative Adversar-
ial Networks (GANs) [JBV16,ZZB∗18]. Zhou et al. [ZZB∗18] use 
GAN for non-stationary texture synthesis. Their network is trained 
to double the spatial extent of texture blocks extracted from a spe-
cific texture exemplar, and then used to expand the size of the en-
tire exemplar. Our method is inspired by this work, but we improve 
their network and training procedure to better fit our problem. Hu 
et al. [HDR19] introduced a framework for inverse procedural tex-
ture modeling: trained an unsupervised clustering model to select 
a most appropriate procedural model and then used a CNN pool to 
map images to parameters. It solved a different problem, compared 
to our method.

©c 2020 The Author(s)
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Figure 2: Imaging setup.

Preliminaries. We follow the assumption and the setup pro-
posed by [AAL16] to get an image. As shown in Figure 2, the light
source is very close to camera, so at each individual pixel, the light-
ing and viewing directions can be considered identical. Given an in-
put image with size m×m, our network generates SVBRDF maps
encoded in a multi-channel image u with size 2m×2m, consisting
of the diffuse albedo ρd ∈ R3, specular albedo ρs ∈ R, roughness
α ∈R, and surface normal n ∈R3, where u = [ρd ,ρs,α,n]. We use
Cook-Torrance reflectance model [CT82] for rendering. The ren-
dered result in a given lighting condition is denoted as y=R(u;e, l),
where e is the half-vector, l is the irradiance value, and they are es-
timated similarly to Aittala et al. [AAL16].

3.1. Network architecture

Our GAN consists of a two-stream generator and a patch discrim-
inator (see Figure 3). From the input image, we first randomly
choose a candidate tile x (with the size of 2n× 2n), crop a tile xc
(with the size of n× n) from the center of x and feed it into the
generator. The size of the input image (m×m) should be at least
4 times of the tile size (n× n). In the generator, we generate the
maps of the tile with two groups separately: normal and roughness,
diffuse and specular, called two-stream generator. Then we use the
predicted SVBRDF maps to render an image and distinguish the
rendered image and the candidate tile x from the input image in the
discriminator.

Generator. Our generator consists of one untrained encoder En
and two decoders Den,α, Deρd ,ρs , where Den,α produces normal and
roughness and Deρd ,ρs produces diffuse and specular.

The encoder (see Figure 4(a)) takes in a n×n image and extracts
high dimensional features. The encoder has 4 convolutional layers,
with each followed by an instance normalization and leaky-ReLu
activation. The extracted features are taken by the decoders Den,α
and Deρd ,ρs to produce n, α, ρd , ρs:

Gn,α = Den,α(En(xc)) = [n,α] (2)

Gρd ,ρs = Deρd ,ρs(En(xc)) = [ρd ,ρs] (3)

Figure 4(c) shows the decoder architecture. Both of the two de-
coders have five transposed convolutional layers. The first four lay-

ers are followed by instance normalization and leaky-ReLU activa-
tion function. The two decoders differ in the output channel of the
last transposed convolutional layer. Den,α outputs a two-channel
image of SVBRDF parameters: one channel for height map, and
one channel for roughness. Deρd ,ρs outputs three channels for RGB
diffuse albedo, and one channel for specular albedo. We use the
height map rather than the normal map directly, for the network
stability reason.

Discriminator. The generated SVBRDF maps from the de-
coder are rendered into a re-rendering image. Both this rendered
image and the candidate tile with size 2n× 2n from the input im-
age are fed to the discriminator (denoted as Dis) to determine the
correctness of the generated SVBRDF maps. More specially, we
employ the patch discriminator architecture proposed by [IZZE17]
(see Figure 4(b)). It consists of five convolutional layers. The first
4 convolutional layers are followed by instance normalization and
leaky-ReLu activation. After the fifth convolutional layer, the high
dimensional features are projected into a scalar using 1×1 convo-
lution and sigmoid activate function.

Discussions:

• We used an untrained encoder in our network, as starting from
random vectors with enough texture information helps the gen-
erator to converge better. Figure 5 visualizes several layers out-
putted by the encoder, and shows the textures are preserved well.
• We used a two-stream generator: one stream for normal and

roughness and the other for diffuse and specular in our decoder.
The key idea behind is to force the network to optimize maps
with balance. In comparison, other methods [LDPT17, LSC18,
DAD∗18] used one stream for all the maps and trended to over-
estimate the diffuse map. Figure 15 compares our two-stream
generator against one steam (encoder-decoder) architecture gen-
erator.
• We also considered using one decoder for each map or even one

encoder-decoder network for each map, but it increases both the
training time and redundant variables. Since the encoder extracts
features from low-dimensional inputs, the SVBRDF maps are
highly correlated, so that it’s not necessary to use four encoders.
As for the decoders, we observe that two decoders are already
satisfied and also save training time.

3.2. Loss function

We proposed to guess the diffuse map and use it as the ground truth
for the diffuse map, called guessed diffuse map, as our method is
unsupervised and we do not have the ground truth maps. We choose
to guess the diffuse map ground truth, as it’s the most obvious one
among the four maps from an input image. Firstly, we compute the
normalized input image X∗, as in [AAL16]:

X∗ =
(
X−Xmean)/(Xσ +10−4

)
(4)

Xmean = blur(X) (5)

Xσ =

√
blur

(
(X−Xmean)2

)
(6)

©c 2020 The Author(s)
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data flow in generator

data flow to discriminator

loss computed operation

Render

latent z

Generator

guessed diffuse map

normal roughness

diffuse specular

Discriminator

Figure 3: Framework of our GAN architecture. When training, we randomly choose a candidate tile x, crop a tile xc from the center of x
and feed it into the generator. The generator generates the maps of the tile with two groups separately: normal and roughness, diffuse and
specular. The discriminator distinguishes between the rendered image and the candidate tile. A guessed diffuse map (computed from x) is
used as guidance for the predicted diffuse map. The network is trained using a joint loss function of adversarial loss Ladv and L1 loss Ld .
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Figure 4: Network architecture. (a) Encoder architecture. (b)
Discriminator architecture. (c) Decoder architecture. Blue blocks
stand for convolutional layers, green blocks stand for instance nor-
malization, gray blocks stand for activation functions. Kernel size
and number of feature channels are marked on convolutional lay-
ers.

Channel 0 Channel 1 Channel 2 Channel 3

Figure 5: Visualization of the first 4 layers latent vector from en-
coder. Even with untrained parameters, the encoder still can pre-
serve texture information.

Input image X Normalized image X*

Figure 6: Examples of normalized images. Normalization reduces
the significant lighting variation.
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We subtract the Xmean (computed as the strongly Gaussian blur-
ring) from X and point-wise divide by the standard deviation Xσ.
Figure 6 shows examples of normalized images.

Then we use X∗ as the guessed diffuse map for diffuse maps:

ρ̃d = X∗ (7)

Based on the guessed diffuse maps, we proposed a joint loss
function L f inal : L1 loss Ld(G) between generated diffuse map
and the guessed diffuse map, and a weighted adversarial loss
LGAN(G,D):

L f inal = λLGAN(G,D)+Ld(G), (8)

LGAN(G,D) = E[logDis(x)]+E[log(1−Dis(y)], (9)

Ld(G) = E [‖ρ̃d−ρd‖1] . (10)

Discussions: We use L1 distance rather than L2, because L1 loss
produces less blurring results. We also try L1 loss between a re-
rendering image y and an image tile x:

Lrender(G) = E [‖x−y‖1] . (11)

But the results are not satisfying. When there are highlights on the
input image, the diffuse map is highly affected and overestimated,
resulting in incorrect rendering under novel view (see Figure 16).

3.3. Training and Implementation

During training, in each iteration, we randomly crop a 256× 256
candidate tile and its corresponding values as the ground truth.
The center of the candidate tile 256× 256 with size 128× 128 is
cropped and fed to the generator. The generated maps are rendered
to a re-rendered image. Then re-rendered image and the candidate
tile are fed into the discriminator. Among one iteration, we take 5
gradient descent steps on the generator Gn,α, one step on the gener-
ator Gρd ,ρs and one step on the discriminator. We train the network
for 20,000 iterations, with different randomly cropped tiles in each
iteration.

We use the Adam optimization algorithm [KB14] with a fixed
learning rate of 2e-5. Weights of the untrained encoder layers are
initialized from a Gaussian distribution with mean 0 and standard
deviation 0.02. The hyper-parameter λ is set to 0.1. It takes approx-
imately 3 hours to train our network for one image using a TitanX
GPU.

During predicting, our network is able to generate SVBRDF
maps with 2× resolution of the input image. To produce higher
resolution SVBRDF maps, the neural network should be run iter-
atively. For instance, given a 512× 512 input image, it requires to
run our network three times to get a 4K× 4K (See Figure 8). One
advantage of our network is the trained model can be used for input
image with an arbitrary size, so the second and following expan-
sions of the image can use the trained model directly.

4. Results and discussion

4.1. Results

Recovered and synthesized SVBRDFs. Figures 7 shows a se-
lection of representatives of input photographs, and our generated
SVBRDF maps. The input images are from the 72-material iPhone
5 flash-no-flash dataset [AWL∗15]. We discard the outer 37% of
the 3264× 2448 images, move the brightest part to image center
and then resize the remaining part to 1632× 1224 resolution. The
size of the generated SVBRDF maps are 3264× 2448. The results
demonstrate that our method reproduces a rich set of reflectance
effects for leathers, plastics, fabrics successfully. For both images
with regular structures (fabric and plastic) and irregular structures
(leather), our method can synthesize higher resolution SVBRDF
maps without any artifacts. Comparing the zoom-in of the ren-
dered images and the input image, the original patterns are well
preserved. As expected, the SVBRDFs maintain consistent struc-
ture across the entire image, and rich in details.

Iterative expansion. Our model can expand an image to twice of
its input size. By repeating the expansion, we can synthesize higher
resolutions, until reaching the limitation of the GPU memory. This
is useful when the input image has low resolution. We crop a 512×
512 tile from the fabric_yellow image from the dataset [AWL∗15]
as the input image, and use it to train a model. After training, we
feed in the image tile repeatedly and get 4096× 4096 SVBRDF
maps. Figure 8 shows the results of SVBRDF maps and render-
ings. The details and structures are preserved well in the iteratively
synthesized SVBRDFs.

3D scenes rendering. To further validate our method, we used
our synthesized maps to render a 3D scene (Figure 1). In this scene,
maps for sofa, chair, and bucket are recovered from captured im-
ages. The white brick wall and the wood floor are recovered from
rendered images. The scene is rendered with Arnold renderer1. Our
generated high-resolution maps produce a seamless appearance.

4.2. Comparison with previous works

We compare our outputs with existing methods [DAD∗18,
GLD∗19] using both rendered images and real world captured pho-
tos. The reference maps are from some free texture and material
websites2,3. We notice that GANs aim at generating images look
like the real images, but are not pixel-to-pixel corresponding. For
better pixel-to-pixel comparison with reference maps in Figure 9,
we replace the last transpose convolutional layer with a convolu-
tional layer, to output SVBRDF maps with the same size as the
input image. In Figure 10 and Figure 11 the reference maps of real
world photos are not available, so we still use our original trans-
posed convolutional layer.

Low-resolution SVBRDFs. Exiting works,
e.g. [DAD∗18], can only generate low-resolution SVBRDFs.
To compare with them, we cropped a small image (256 × 256)
and predict it’s SVBRDF maps. We show results for both rendered

1https://www.arnoldrenderer.com/arnold/arnold-for-maya
2https://texturehaven.com
3https://freepbr.com
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Figure 7: Generated diffuse, specular, roughness and normal maps and rendering results with our method from several input images.

et al. [DAD∗18] generates less accurate rendered result. Comparing
our method and [GLD∗19], our method generates more accurate
specular. Although, in theory, from one input image, it’s impos-
sible to decide which map contributes more, it’s more convincing
that a leather should have some specular from real life observations.
Thus, our SVBRDF maps are more plausible and result in a better
novel view rendered image.

High-resolution SVBRDFs. Gao et al. [GLD∗19] can re-
cover high-resolution SVBRDFs from high-resolution input im-
ages. Figure 11 compares SVBRDF maps recovered from 1024×
1024 captured images. We train our model using 1632 × 1224 in-
put images, and crop a 512 × 512 image to generate 1024 × 1024
SVBRDF maps. For Gao et al. [GLD∗19], we also use a single
image as input (N=1), due to the availability of images with more
views and light directions. We do not provide errors in this com-
parison, as there are no reference images, except the input image.
Both methods generate a very close rendered image to the input
image. Regarding the SVBRDFs, Gao et al. [GLD∗19] has slightly
artifacts at the center of the diffuse maps. This artifact is also visi-
ble in the novel view rendering result. Our method generates more
plausible maps and novel view renderings.

Brute force SVBRDFs synthesis. Directly applying texture syn-
thesis methods to low-resolution SVBRDF maps can also resulting

images (Figure 9) and captured images (Figure 10). In Figure 9, 
our network is trained using a rendered 1024 × 1024 image with 
known view and light direction. For Gao et al. [GLD∗19], we 
use the reference maps to render 20 images as inputs (N=20), 
and [DAD∗18]’s outputs as initialization. The errors (mean 
square error, MSE) between the maps / rendered images and 
the references are shown under the images. For the re-rendered 
results, our method produces the best rendered result, while Gao 
et al. [GLD∗19] is slightly different from the input image, and 
Deschaintre et al. [DAD∗18] produces the least accurate result. For 
the recovered SVBRDFs, our method generates better diffuse and 
specular map, while the roughness map is less accurate. Comparing 
the novel view rendered results, although Gao et al. [GLD∗19] has 
the lowest error, our result is more similar to the reference visually, 
while Gao et al. [GLD∗19] produces blurry highlights, due to the 
inaccuracy of the specular map.

In Figure 10, we also compare SVBRDF maps using captured 
photos (from Aittala et al. [AWL∗15]). We trained our model us-
ing a 1632 × 1224 input image, and cropped a 128 × 128 im-
age for SVBRDF maps prediction. For Gao et al. [GLD∗19], we 
use a single image as input (N=1), as images with more views and 
light directions are not available. Both Gao et al. [GLD∗19] and our 
method generate similar results to the reference, while Deschaintre
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Figure 8: Using our model three times to generate SVBRDFs with size 4K×4K from a 512×512 input image.

in higher-resolution SVBRDFs, referred as Brute force SVBRDFs
synthesis. Since the maps are synthesized respectively, there is no
guarantee that the maps can preserve the same pattern as the in-
put image. Figure 12 shows a comparison between our method and
the brute force method. The errors are not shown, as the generated
maps or rendered results used texture synthesis, so they are not able
to match the references exactly. As expected, the synthesized dif-
fuse map and normal map from the brute force method have mis-
aligned patterns and strong inconsistency (see bottom row close-up
view). In contrast, our method can preserve the consistency among
the maps very well. Besides the quality, our method only needs to
be trained once on the input image, and then it is ready to gen-
erate higher-resolution SVBRDFs. As for the brute force method,
after recovering low-resolution SVBRDFs from the input image,
it then requires training on all four maps and synthesizing higher-
resolution SVBRDFs respectively.

We then compare our method with Aittala et al. [AAL16],
which also targets at inputs with repetitive structures. Aittala et
al. [AAL16] can only recover SVBRDFs and relies on other meth-
ods for synthesis. We used histogram preserved blending [HN18]
for synthesis. There are several other texture synthesis methods,
such as Gatys et al. [GEB15], and TileGAN [FAW19]. But they
require a high-resolution target image or a lot of input images, so
they are not suitable for this problem. In Figure 13, we compare our
method with Aittala et al. [AAL16] on a low-resolution output (left
image), and compare with Aittala et al. [AAL16] combined with
Heitz and Neyret [HN18] on a high-resolution output. We used the
same parameters (glossiness rather than roughness) and the same
range for the parameters as Aittala et al. [AAL16]. Regarding the
reflectance model, we used the Cook-Torrance reflectance model
and they used the Blinn reflectance model. By comparison, for
SVBRDF recovery only (left image), the diffuse map of [AAL16]
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Figure 9: SVBRDF maps of 256× 256 from rendered images, compared with Deschaintre et al. [DAD∗18] and Gao et al. [GLD∗19]. The
errors (MSE) under the images show the difference between the image and the reference. The lowest error is marked in blod.

(Ladv + Ld), a joint loss function with rendering loss and adver-
sarial loss (Ladv + Lrender) and adversarial loss only. We observe
that the uneven light affects the maps when using Ladv +Lrender or
just using Ladv only. The network trained using our designed loss
function produces more correct maps (second row). The maps are
not affected by the lighting in the input image, thus they produce
better rendered result under novel light directions.

4.4. Limitation

Our method is able to synthesize SVBRDFs for input image with
regular patterns, like the fabric (Figure 7), and also for input images
with irregular patterns, like leather (Figure 7). But our method can
not handle input images with global structures. In Figure 17, we
generate the SVBRDFs and rendered results from an image without
repetitive features. Our method fails to synthesize the images, and
only increases the resolution. Our method relies on cropping a lot
of small tiles from the input image to train the model. However, the
tiles from images without repetitive features are not similar, and
can not lead to successful training.

Another limitation of our method is that the synthesized output
size is limited by the graphics card memory. Furthermore, the size
of the input image should be at least 4 times the size of the tiles to
make sure there are enough tiles used for training. This is to make

has obvious discontinuous artifacts, which are amplified in the syn-
thesized diffuse map and rendered image (right image), while our 
method is able to preserve the structural feature.

4.3. Network Analysis

Using an untrained encoder. In Figure 14, we compare the gen-
erated SVBRDFs and re-rendered results of our encoder (untrained 
encoder) and the trained encoder. Both the maps and the rendered 
result are closer to the references. The network with a trained en-
coder has more parameters, thus it has stronger fitting capabilities. 
But in visual and quantitative comparisons, the network with an 
untrained encoder can produce results that are not much different 
from the previous approach, and the MSE of the diffuse map and 
the roughness map are even lower. Besides, our untrained encoder 
saves training time.

Effects of the two-stream generator. Figure 15 shows the gen-
erated SVBRDFs and rendered results of both our method (two-
stream generator) and one stream generator. Our method generates 
much closer maps and the rendered results to the reference, while 
the one-stream generator suffers from artifacts in both the normal 
map and the rendered result.

Comparison of different loss functions. Figure 16 compares 
the outputs with different loss functions: our joint loss function
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Figure 14: Comparison of our encoder (untrained) and a trained
encoder. The training time is shown under the images. The results
of the two approaches are not much different from both visual and
quantitative comparisons, and the untrained encoder saves training
time.

sure that the randomly cropped tiles are different enough from each
other, otherwise the GAN might fall into mode collapse or gradient
vanishing.

Overall, our method is able to produce high quality rendered
images and novel view rendered images. Regarding the SVBRDF
maps, our method weakened the diffuse map and enhanced the
specular map, due to the two-stream framework, compared to other
methods (Deschaintre et al. [DAD∗18] and Gao et al. [GLD∗19]).
This mechanic produces more reasonable maps for set of materials,
like leathers, while overestimates the specular map for less shiny
materials, like fabric. A deeper work on digging the material ap-
pearance in real life will be a possible solution for this issue.

5. Conclusion

We have presented an unsupervised generative adversarial network
(GAN) for simultaneous recovery and synthesis of SVBRDF maps
from a single image. We proposed a two-stream generator to en-
hance the specular maps and a novel joint loss function consid-
ering both adversarial loss and an L1 loss. Our model does not
rely on a heavy dataset, as it is an unsupervised method. As far
as we know, this is the first unsupervised GAN model for recovery
and synthesis of SVBRDF maps. The model is trained using tiles
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Figure 15: Comparison of output SVBRDF maps using common
encoder-decoder architecture generator (last column) and our two-
stream generator (second column). Our two-stream generator re-
moves lighting from diffuse map and generates more plausible nor-
mal map.

cropped from the input image and then used for SVBRDF maps
recovery and synthesis of the input image. The training time is ac-
ceptable. Our model can be used iteratively to synthesize extremely
high-resolution images. In the end, our model is able to generate
SVBRDFs and rendered images closer to the references, which are
more plausible than the results from the state-of-the-art methods.

With a single input image, the problem is under-constrained and
several maps could contribute to the observed features. Our sepa-
ration between normal and roughness on one side and diffuse and
specular albedo on the other tends to give more weight to the nor-
mal map, but also to the specular component. In future work, we
want to introduce existing knowledge about the material, for exam-
ple that leather is more specular, and fabric more diffuse.
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